
Deconstructing and Restyling D3 Visualizations
Jonathan Harper

University of California, Berkeley
jharper@eecs.berkeley.edu

Maneesh Agrawala
University of California, Berkeley

maneesh@cs.berkeley.edu

ABSTRACT
The D3 JavaScript library has become a ubiquitous tool for
developing visualizations on the Web. Yet, once a D3 vi-
sualization is published online its visual style is difficult to
change. We present a pair of tools for deconstructing and
restyling existing D3 visualizations. Our deconstruction tool
analyzes a D3 visualization to extract the data, the marks and
the mappings between them. Our restyling tool lets users
modify the visual attributes of the marks as well as the map-
pings from the data to these attributes. Together our tools
allow users to easily modify D3 visualizations without exam-
ining the underlying code and we show how they can be used
to deconstruct and restyle a variety of D3 visualizations.

Author Keywords
Visualization, chart understanding, restyling, D3

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces – Graphical User Interfaces

INTRODUCTION
The D3 library [7] has emerged as one of the most popular
tools for producing visualizations on the Web. News and me-
dia websites such as the New York Times [22], MTV [21] and
the Boston Globe [8] regularly publish D3 visualizations that
reach hundreds of thousands of viewers. Beyond these high-
traffic sites, a large community of Web developers has posted
thousands of example D3 visualizations online [33, 25, 2].

Because D3 is built using Web standards (e.g. HTML, SVG,
JavaScript) skilled developers can modify the visual style of
an existing visualization by copying and editing the code.
Yet, such modification requires significant coding expertise
in the Web standards and an interest in understanding how
the visualization code works. So for most viewers, once a D3
visualization is published its visual style is effectively fixed.

Nevertheless, there are many reasons a viewer may want to
modify the style of a visualization. For instance, a colorblind
viewer may need to shift the red and green marks in a chart to
colors that are easier to distinguish. A blogger might wish to
embed a scatterplot in her blog, but change the color, shape
and size encodings of the marks to match the overall design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’14, October 05–08, 2014, Honolulu, HI, USA.
Copyright c© 2014 ACM 978-1-4503-3609-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2642918.2647411

Figure 1. Our deconstruction and restyling tools allow a viewer to mod-
ify the shape and color encodings of a D3 visualization published by the
New York Times. The restyled result changes the circles to stars and
re-maps the tax rate data field to a new color scale.

of her webpage. A viewer might prefer to view a pie chart in
the form of a bar chart so that it is easier to compare the data
values. But, without understanding the underlying code and
how it maps data to marks, making such stylistic changes to
a D3 visualization is out of reach for most viewers.

We introduce a tool that can automatically deconstruct ex-
isting D3 visualizations, to extract the data, the marks, and
the mappings between them. We also provide a graphical
restyling tool that lets users modify the visual attributes of
the marks as well as the mappings from the data to these at-
tributes. Our tool warns users when such modifications break
an existing mapping so that users can make sure the restyled
visualization conveys all of the data shown in the original vi-
sualization. Together our tools allow users to easily restyle
existing D3 visualizations without examining the underlying
code (Figure 1). We demonstrate the versatility of our tools
by deconstructing and restyling a number of different types
of D3 visualizations including bar charts, scatterplots, donut
charts, choropleth maps and line charts.

1

RELATED WORK
Visualizations convey information by mapping data to the vi-
sual attributes of graphical marks. Bertin first described this
mapping process in his seminal work Semiology of Graph-
ics [1]. Visualization design tools like Excel, Google Spread-
sheets, Polaris/Tableau [28], and Lyra [26] let users directly
specify how data maps to mark attributes through a graphical
user interface. Programmatic toolkits and libraries such as
Infovis Toolkit [14], Prefuse [16], ProtoVis [6], ggplot2 [34],
D3 [7] and Vega [32], let programmers specify these map-
pings in code at different levels of abstraction. While these
tools facilitate the process of constructing visualizations, our
work addresses the inverse problem; we deconstruct an in-
put visualization to recover its data and marks as well as the
mappings relating them. We focus on D3 visualizations be-
cause they are ubiquitous and are based on open Web stan-
dards (HTML, CSS, SVG, etc.) that allow inspection.

Bitmap images of charts are even more commonly available
online than D3 visualizations. Researchers have applied com-
puter vision techniques for recognizing the chart type (e.g.
bar chart, pie chart, etc.) of such images. These techniques
first extract high-level shape descriptors from the image and
then classify the image based on these features [18, 23] Oth-
ers have developed specialized image processing methods to
extract the data-encoding marks from such chart images [36,
19, 18, 17, 35]. These methods analyze the edges in the im-
age and apply heuristics based on knowledge of the chart type
to identify the bars, pie slices, etc.

Savva et al.’s ReVision [27] combines such chart type clas-
sification with mark extraction and then further analyzes the
marks to semi-automatically extract the underlying data from
an input chart image. However, their complete pipeline is
only designed to work for bar and pie charts, and the overall
accuracy of their recovered data (38-53% depending on chart
type) is limited by image resolution, noise, compression arti-
facts and classification errors. In contrast, because we focus
on deconstructing D3 visualizations, we can directly access
the data bound to each mark and our recovered data is always
100% accurate. Unlike ReVision, our approach also extracts
mappings between the data and mark attributes.

Our restyling tool is inspired by recent work on transform-
ing images of visualizations to explore new visual forms [10]
or aid chart reading [20]. However, because these techniques
operate on bitmap images of visualizations, they are limited
to warping the entire image or adding graphical overlays onto
the image. Because our restyling tool operates on D3 visu-
alizations, it can directly modify mark attributes and thereby
provide far more restyling control than the earlier techniques.

D3 PRELIMINARIES
D3 is a JavaScript library for building visualizations by ma-
nipulating the Document Object Model (DOM) of a webpage.
The DOM is a hierarchical representation in which each node
is a tagged element such as <body> or from HTML
or <rect>, <circle> or <polygon> from Scalable Vec-
tor Graphics (SVG). Most D3 visualizations are built using
SVG because it provides a complete scene graph representa-

tion for 2D vector graphics. Therefore, we focus on SVG-
based D3 visualizations in this work

SVG includes several types of nodes, including a root node
<svg> that creates a viewport for the graphics, group nodes
<g> that allow hierarchical grouping of sub-nodes to form
an SVG tree, and mark generating nodes such as <rect>,
<circle>, or <polygon>, which produce marks on-
screen. Each SVG node establishes its own local coordinate
system and provides a tranformation matrix from the parent
space to the local space. The mark generating nodes also in-
clude a set of visual attributes such as position, width, height,
fill-color and stroke-width, that define the appearance of the
mark when it is rendered. D3 developers have shown that this
set of SVG primitive nodes is expressive enough to represent
a wide variety of visualizations.

A key feature of D3 is that it allows developers to bind input
data to SVG elements as they construct and modify a visual-
ization. This binding lets developers specify functional rela-
tionships between the data and visual attributes of the SVG
elements. Consider the bar chart example in Figure 2a-b.
Lines 4-6 of the code fragment create a set of <rect> nodes,
each bound to one entry in the items[] data array. Line 7
appends each <rect> node as a child of the root <svg>
node to form the SVG tree (Figure 2c). Lines 8-16 apply
data-dependent functions to assign the x-position, height and
fill-color visual attributes of the <rect> nodes, while lines
17-18 set the width and stroke-width of these nodes to con-
stants. Thus, each fully specified <rect> node includes a
data property holding the bound data as well as a set of

visual attributes (Figure 2d).

OVERVIEW
Our system includes two main tools; one for deconstructing a
D3 visualization and one for restyling the visualization. The
deconstruction tool analyzes the SVG representation of the
visualization to recover its constituent data and marks, and to
infer the mappings between them. The restyling tool uses the
deconstructed information to help users change the style of
a visualization while warning them when such style changes
conflict with the data-encodings in the original visualization.

The data D3 binds to DOM elements is only accessible from
within the JavaScript environment in which the visualization
was constructed. So, in order to analyze a D3 visualization
our tools require access to its environment. We built our tools
as an extension for Google Chrome browser [11] because
such extensions are allowed to inject code into the JavaScript
environment of an existing webpage and can thereby access
the bound data.

DECONSTRUCTION
To initiate deconstruction, users must right click anywhere
within a D3 visualization. Our deconstruction tool listens for
such click events, finds the DOM node containing the click
and then walks up the DOM tree to find the root <svg> node
of the visualization The resulting DOM sub-tree contains all
of the SVG elements comprising the visualization and we an-
alyze this sub-tree to deconstruct the visualization.

2

 1 items = [{name: "apple",type: "fruit", cost: 1.00},
 2 {name: "pear", type: "fruit", cost: 2.00},
 3 {name: "beef", type: "meat", cost: 5.00}]

 4 var bars = svg.selectAll("rect")
 5 .data(items)
 6 .enter()
 7 .append("rect");
 8 bars.attr("x", function(d, i)
 9 {return i * 25;})
10 .attr("y", function(d)
11 {return h - d.price * 10;})
12 .attr("height", function(d)
13 {return d.price * 10;})
14 .attr("fill", function(d, i)
15 {if(d.type === "fruit"){return "green";}
16 else if (d.type === "meat"){return "red";}})
17 .attr("width", "20px")
18 .attr("stroke-width", 0);

(b) D3 Code Fragment Generating Colored Bars

tagName: rect
__data__:
 name: pear
 type: fruit
 cost: 2.00
attributes:
 x: 25
 y: 50
 width: 20
 height: 100
 fill: green
 stroke-width: 0

(c) SVG Tree

(d) SVG Element

<svg>

<rect> <rect><rect>

(a) Bar Chart

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

apple pear beef

Figure 2. Example bar chart visualization (a) and D3 code fragment generating the rectangular marks representing the bars in the chart (b). The
code creates three <rect> nodes and binds one data point to each of them (lines 4-7). It then sets the visual attributes of each using a combination of
data-dependent functions and constants (lines 8-18). The code for generating the axes and labels is not shown. The resulting SVG tree (d) contains a
single parent <svg> node and three children <rect> nodes (c). Each <rect> node includes a data property holding the data that is bound to it
as well as a set of visual attributes (d).

Extracting Data and Marks
To extract the data and marks from the selected visualiza-
tion, we traverse the SVG sub-tree in pre-order and enumerate
all nodes that meet two conditions; (1) the node generates a
graphical mark1 and (2) the node is bound to data. These two
conditions ensure that the resulting list of nodes captures all
of the data-encoding marks in the visualization. In the case
of our bar chart example, we enumerate a sequence of three
<rect> nodes that form the bars of the chart.

Data extraction. Most D3 visualizations bind one data item
to one mark generating SVG node. In such cases we extract
the data by retrieving the data property from each node
in our enumerated list. The retrieved data may consist of a
simple typed value (e.g. a number, a string, etc.) or a more
complex JavaScript object containing one or more data fields
and a value for each field. In our bar chart example (Figure 2),
each <rect> node is bound to a data object which contains
the fields name, type and cost, and a value for each one. We
refer to the set of data fields associated with a data object as
its data schema. If the data consists of a simple value rather
than an object, we treat its data type as the schema.

D3 visualizations can include multiple data schemas. For ex-
ample, a grouped bar chart may contain one set of bars bound
to a data schema for movie box office revenue, while another
set of bars is bound to a schema for DVD revenue. In such
cases, we group the data by schema as we extract it and gen-
erate one data table per schema. We extract 3 data tables
for our bar chart example (Figure 3). The first table repre-
sents the item[] data bound to the <rect> nodes. The
other two tables represent the string label data (e.g. “apple”,
“pear”, “beef”) bound to the x-axis and the numeric label data
(e.g. 0.0, 0.5, ... 5.0) bound to the y-axis. When D3 gener-
ates axes, it binds such label data to <line> nodes forming

1We consider any SVG node that produces visible marks on-screen
as a mark generating node (e.g. <rect>, <circle>, <line>,
<polygon>, <path>, <text>). In contrast nodes like <svg>
and <g> set up and transform the view but do not produce marks.

tick marks and <text> nodes for graphically displaying the
labels. Note that Figure 3 does not show the third table.

Some visualizations use the ordering in which data is bound
to the elements to assign the visual attributes of the marks.
For example, in line 13 our example bar chart sets the x-
position of the bar based on the ordering index i in which
the bar is constructed. As we extract the data we recover this
ordering index by saving the pre-order tree-traversal index for
each node as an additional deconID field in the data table. Al-
though the pre-order traversal index may not exactly match
the original data binding order i, there is usually a linear re-
lationship between them. We exploit this linear relationship
when we construct mappings between the data fields and vi-
sual mark attributes (see next Section on Mappings). Finally
we keep a reference to the original SVG node in the visual-
ization so that we can later modify and re-style the element.

Mark extraction. Next we extract a set of mark attributes
from each SVG node in our enumerated list. These attributes
fall into two categories:

• Appearance attributes determine the the visual look of the
mark. Examples include shape, fill-color, stroke-color,
stroke-width, font-style and font-size.

• Geometric attributes determine the spatial properties of
the mark. Examples include x-position, y-position, width,
height, and area.

The primary appearance attribute is shape as it defines the vi-
sual form of the mark. In the deconstruction stage we treat the
tag name of the mark generating SVG node (e.g. <rect>,
<circle>, etc.) as the shape attribute. Note that although
some nodes such as <polygon> and <path> may repre-
sent many different shapes, since we only extract the tag name
as the shape attribute our deconstruction tool can not differen-
tiate between the different shapes that a <polygon> could
encode (e.g. triangle, pentagon, hexagon, etc.). However, our
restyling tool does allow users to map data to specific types
of polygons (see Restyling Section).

3

Figure 3. Deconstructed data and restyling interface for the bar chart
from Figure 2. Data Table 1 contains the data and marks for the bars.
while Data Table 2 constains the data and marks for the x-axis tick
marks and text labels. The Mappings Panel shows mappings extracted
from the chart for Data Table 1, with linear mappings shown in purple
and nominal mappings shown in green. Users can remove, change and
add mappings through the Mappings and Add Mappings Panels.

All other appearance attributes directly correspond to visual
attributes of the SVG node. Some of these attributes such as
fill-color, stroke-color, and stroke-width, are defined for every
mark generating node in SVG, while others such as font-style
and font-size attributes are only defined for a subset of SVG
nodes—e.g. the <text> node. As we analyze each SVG
node we retrieve all of the appearance attributes that exist for
it and leave the other appearance attributes as undefined.

In SVG, the representation of geometric information such as
position, width, height and area can differ depending on the
type of the node. For example the position of a <circle>
node represents the location of its center while the position
of a <rect> node represents the location of its upper left
corner. However, SVG also provides access to a bounding
box representation for every type of mark generating node.
The geometric attributes of the bounding box are the same
regardless of node type and there is usually a linear relation-
ship between the geometric attributes of the bounding box
and the corresponding geometric attributes of the underlying
mark (e.g. the area/width/height of an ellipse is linearly re-
lated to the area/width/height of its bounding box). Therefore
we treat the geometric attributes of the bounding box as the
geometric attributes of the mark.

We use the center of the bounding box as the position of the
mark and apply transformations with respect to this center
point. We also transform the bounding boxes into the co-
ordinate space of the root SVG node before extracting the
geometric attributes so that the geometric information for ev-
ery mark in the visualization is in the same global coordinate
space. As we extract the mark attributes for each SVG node
we store them with the corresponding row of the data table.

Handling line charts. While most D3 visualizations bind one
data item to one mark generating SVG node, line charts typ-
ically bind an array of data to a single mark generating SVG
<path> node which produces a polyline on screen. Concep-
tually each data item in the array is bound to the correspond-
ing point in the polyline. To deconstruct such line charts, we
split the data array into a sequence of individual data items
and add each one to the data table. For each data item we

also add a line-id field to the data table which stores the index
of the item within the array. Similarly, we split the polyline
into individual geometric points and set the position mark at-
tribute of the corresponding data item to the coordinates of
the point. We set the other geometric mark attributes, width,
height, and area, to 0. Finally we set the remaining mark ap-
pearance attributes for each of these data items based on the
attributes of the <path> node.

Extracting Mappings
Visualizations encode information by mapping data values to
visual mark attributes. For example, our bar chart (Figure 2),
sets the x-position, height, and fill-color of each bar based
on functions of the underlying ordering index i, and the data
fields cost and type. The first two functions (lines 8-13) are
linear mappings between numeric data and numeric mark at-
tributes (ordering index i→ x-position, cost→ height). The
third function (lines 14-16) is a categorical mapping in which
all data items of the same value map to the same mark at-
tribute value (type → fill-color). Unlike a linear mapping, a
categorical mapping does not require either the data field or
mark attribute to be a numeric type. We recover both kinds of
data-dependent mappings for each data table.

We first test for linear mappings between the numeric data
fields and each numeric mark attribute by fitting a linear
model using linear regression. If the resulting R2 value for
the model is equal to 1, the data fields are linearly mapped
to the mark attribute and we save the line parameters (slopes
and intercept) of the fitted model.

In visualizations, a single mark attribute sometimes repre-
sents a linear combination of multiple data fields. However,
if any of the data fields in such a mapping are themselves lin-
early related, there is a simpler set of mappings each of which
includes exactly one of these linearly related data fields. We
recover this parsimonious set of linear mappings which use
the fewest data fields necessary to explain the relationship
between the data and a mark attribute using an iterative ap-
proach. We first check for mappings between single data
fields and each mark attribute. If we find mappings for an
attribute we remove it from further consideration. If we do
not find a mapping for an attribute, we check for mappings
between pairs of data fields and that attribute. We continue to
iteratively add data fields in this manner until we find one or
more mappings for the attribute or we exhaust the set of data
fields in the data table. The resulting set of mappings for each
attibute is its parsimonious set.

If we do not find any linear mapping for an attribute or the
attribute is non-numeric, we test for categorical mappings be-
tween each data field and the attribute. Specifically, we check
whether whether there is a bijective, one-to-one correspon-
dence between the data field values and the mark attribute
values by testing whether each unique data value corresponds
to a unique mark attribute value.

Our approach often finds multiple mappings between differ-
ent data fields and the same mark attribute. For example, if a
data table includes two or more data fields that are linearly re-
lated to each other, and any of these fields is mapped to a mark

4

attribute, our tool recovers a mapping between each of these
fields and the attribute. Similarly, our tool may find multiple
categorical mappings between different data fields and a sin-
gle mark attribute. In both of these cases all of the extracted
mappings are equally valid and can reveal unexpected corre-
lations or structure in the data. Thus, we show all of these
mappings to the user.

However our deconstruction tool may also find both a lin-
ear and a categorical mapping to the same mark attribute.
Because linear mappings offer a simpler model of the rela-
tionship between a data field and a mark attribute, we auto-
matically filter out categorical mappings in such cases. In
the bar chart example, we initially recover a linear map-
ping cost → y-position as well as a categorical mapping de-
conID→ y-position, but then filter out the more complex cat-
egorical mapping.

Figure 3 shows the mappings we recover for our bar chart
example. Note that although our extracted data table does
not recover the original ordering index i, it does find a lin-
ear mapping between the pre-order traversal index deconID
and x-position. Clicking on a linear mapping shows two data
values and their corresponding attribute values. Since lin-
ear mappings are fully specified by any two such correspon-
dences, we show the minimum and maximum data values to
reveal the full range of the correspondence. Clicking on a
categorical mapping shows each unique data value and the
corresponding attribute value.

Handling color attributes. Color attributes are special cases
for the mapping process because they may be mapped ei-
ther linearly or categorically to the underlying data in sev-
eral different color spaces (e.g. RGB, HSL, LAB, etc.). For
color mark attributes we test for linear mappings to each color
channel independently in RGB space and in HSL space. For
categorical mappings we consider the color triplet in RGB
space as a single complex-typed value.

Splitting data tables. Users may sometimes wish to operate
on a subset of rows in the data table. Our interface allows
users to select a set of rows in a deconstructed table and gen-
erate a new table from the selection. For example, a D3 axis
typically binds the same data to both the <line> node rep-
resenting a tick mark and the <text> node representing a
label. In order to compute mappings for these sets of nodes
independently, the user can select all of the <text> nodes
and place them in a separate data table.

RESTYLING
Our restyling tool lets users change the look of a visualization
by manipulating mark attributes using three kinds of opera-
tions; (1) remove mapping, (2) change mapping, and (3) add
mapping. These operations are accessible by clicking on dif-
ferent parts of the Mappings Panel in our interface (Figure 3).
Each operation first updates the data table with new attribute
values for the marks and then propagates the changes to the
visualization by updating the SVG nodes corresponding to
the mark. Figure 4 shows an example of how we can apply
these three operations in a sequence of steps to convert our
example bar chart from Figure 2 into a colored dot plot.

Original 1. Remove Mapping
Cost g Height

2. Change Mapping:
Cost g Y-Position

Final6. Add Mapping:
Width

7. Add Mapping:
Height

5. Add Mapping:
Shape

3. Change Mapping:
Type g Color

A
ft

er
Be

fo
re

4. Add Mapping:
Name g Color

A
ft

er
Be

fo
re

Figure 4. Restyling the example bar chart from Figure 2 using a se-
quence of 7 restyling operations. Step 1 removes the cost→height map-
ping. Step 2 changes the cost →y-position to raise the marks. Step 3
changes the type →fill-color mapping to modify color or marks. Step 4
adds a mapping from name→fill-color and to replace the mapping from
step 4 despite warnings. Steps 5-7 add mappings that are not based on
data values to modify the shape, width and height attributes of the marks.

Remove Mapping
Users can remove a mapping by clicking the ’X’ button next
to it in the Mappings Panel (Figure 3). Upon removal our tool
updates the value of the mapped attribute to a constant value
for every item in the data table. For linear mappings, our tool
sets the constant to the attribute value of the mark with the
minimum data value. For categorical mappings our tool sets
it to the attribute value of the mark with the lowest deconID.
In step 1 of our restyling example (Figure 4) we remove the
cost→ height mapping, and our tool scales the height of each
bar to that of the bar with the lowest cost. Since our system
transforms marks about the center of their bounding boxes,
the two largest bars no longer touch the x-axis.

Change Mapping
Users can change any existing mapping by clicking on it in
the Mappings Panel (Figure 3). For linear mappings users
can specify new line parameters (slopes and intercept) for the
mapping, which our restyling tool then applies to update the
attribute values of every item in the data table. For categorical
mappings users can specify the attribute value corresponding
to any unique data value. Our tool then updates the attributes
values for all data items that share this data value.

In step 2 of our restyling example (Figure 3) we change the
linear cost → y-position mapping to re-position the rectan-
gular marks so that their centers align with their correspond-
ing costs on the y-axis. In step 3 we change the categorical

5

type → fill-color mapping so that ‘fruit’ maps to ‘pink’ and
‘meat’ maps to ‘brown’.

Add Mapping
Users can add a new mapping by selecting three mapping
properties – one or more data fields, a mark attribute and a
mapping type – via drop-down menus in the Add Mapping
Panel (Figure 3). The data field menu includes each of the ex-
tracted fields in the data schema as well as an option to choose
‘none’. The mark attribute menu includes all of the extracted
appearance and geometric attributes. The mapping type menu
includes linear and categorical types as well as an option to
choose ’none’. As a user selects from these menus our inter-
face further constrains the available options to ensure that the
resulting mapping is valid. Specifically, it checks that linear
mappings always map numeric data fields to a numeric mark
attribute. For instance, if the user selects linear as the map-
ping type, our interface grays out and disables selection for
all non-numeric data fields and mark attributes. Conversely,
if the user selects a non-numeric data field or mark attribute,
our interface disables the linear mapping type.

A key feature of the interface is that it warns users if they try
to add a mapping to an attribute that already encodes a differ-
ent data field. In such cases it is likely that the new mapping
conflicts with the existing mapping and would change the in-
formation conveyed by the visualization. We warn users of
such conflicts in two ways. First, in the mark attributes drop-
down menu we highlight in red all attributes that are already
part of an existing mapping. Second, if the user selects one of
these red attributes we display a text warning explaining that
adding the new mapping will invalidate the existing mapping.
If the user proceeds to add the new mapping despite the warn-
ings, our restyling tool removes the existing mapping before
creating the new one.

After selecting the three mapping properties, users can spec-
ify how data values map to attribute values using the same
interface as for the change mapping operation. Finally the
newly created mapping is added to the list of mappings in the
Mappings Panel.

In step 4 of our restyling example (Figure 4) we decide to
re-color the marks using the name data field instead of type.
To make this change we add a categorical name→ fill-color
mapping. But because the type→ fill-color mapping already
maps a data field to the fill-color attribute, our interface high-
lights fill-color in red in the drop-down menu and displays
warning text as soon as we select it from the menu. Despite
the warnings we continue to build the new mapping by speci-
fying that ’apple’ maps to ’blue’, ’pear’ maps to ’orange’ and
’beef’ maps to ’purple’. Our tool then removes type → fill-
color and adds name→ fill-color to the Mappings Panel.

The data-encoding marks in a visualization often include
some attributes that do not encode data but significantly effect
the look of the visualization. In our restyling example, the
shape attribute of the marks does not encode data. Users can
modify such attributes values by selecting the attribute and
setting the data field to ’none’ in the Add Mapping Panel. Our
interface then displays the set of unique attribute values that

Star Triangle Diamond Plus

Figure 5. Symbolic shapes supported by our restyling tool.

appear in the visualization and users can interactively spec-
ify new values for them. In step 5 of our restyling example
(Figure 4) we change the shape of the marks from ’rect’ to
’triangle’. Similarly in steps 6 and 7 we change the widths
and heights of the marks from 20 to 15.

Updating Marks in the Visualization
As users perform restyling operations our tool updates mark
attributes in the data table and then updates corresponding
SVG nodes in the DOM of the original visualization. For
each updated mark the restyling tool creates a new SVG node
with its type specified by the shape attribute. Although the
shape attribute is usually an SVG node type, our restyling
tool also supports a set of symbolic shapes (star, diamond,
triangle, plus) that are all represented as SVG <polygon>
nodes with pre-defined geometry (Figure 5). If the shape at-
tribute is one of these symbolic shapes our tool converts it
into the corresponding pre-defined <polygon> node.

Our restyling tool also transforms all geometric attributes
from the global coordinate space into the local space of the
original SVG node representing mark. It then converts these
bounding box based geometric attributes into attributes ap-
propriate for the node type (e.g. position is upper-left corner
for <rect> nodes, but center for <circle> nodes). Our
tool then sets the geometric and appearance attributes of the
new SVG node and binds data as well as event handlers from
the original node to the new node. Finally, our tool replaces
the original SVG node with the newly created node.

RESULTS
As shown in Figures 1, 6 and 7 we have used our sys-
tem to deconstruct and restyle a number of D3 visualiza-
tions from a variety of sources. These examples incorpo-
rate modifications of many different mark attributes including
fill-color (Figures 1, 6a–c, 6e, 6f, 7g–i), stroke-color (Fig-
ure 6b, 6e, 6f, 7g), stroke-width (Figures 6e, 6f), font-style
(Figure 6a, 6b, 6f, 7g), shape (Figures 1, 6a, 6c, 6d, 6f, 7g, 7i),
position (Figures 6a, 6d, 7g-i), as well as width and height
(Figures 6a, 6b, 6d, 6f, 7g-i). All of our restyled examples
represent the same data as the original visualization, but some
examples re-map data fields to different mark attributes (Fig-
ures 6c, 6e–f, 7g, 7i), while other examples change the param-
eters of the existing mappings (Figures 1, 6a, 6b,6d–f, 7g, 7h).
Many examples also modify mark attributes that do not en-
code data but affect the look of the visualization (Figures
1, 6a, 6b, 6e, 6f, 7g, 7i.

New York Times Chart (Figure 1). In the original visual-
ization U.S. companies are represented by circles that show
each company’s effective tax rate using the fill-color and x-
position attributes. Each company’s market capitalization is
mapped to the area attribute. In our restyled result we change
the fill-color attribute to color marks using a red to blue di-
verging color scale [9]. We also change each mark’s shape

6

Figure 6. A variety of D3 visualizations collected from the Web, before (left column) and after (right column) deconstruction and restyling with our
tools. Deconstructed mappings are shown to the right of the original visualization, and the mappings after restyling are shown to the right of the
restyled result along with any unmapped attributes that were changed in the restyling. We use the L−→ and C−→ notation to indicate linear and categorical
mappings respectively. Mappings removed and added during restyling are highlighted in red and and green respectively. Changed mappings and
attributes are highlighted in blue.

7

Figure 7. A variety of D3 visualizations collected from the Web, before (left column) and after (right column) deconstruction and restyling with our
tools. Deconstructed mappings are shown to the right of the original visualization, and the mappings after restyling are shown to the right of the
restyled result along with any unmapped attributes that were changed in the restyling. We use the L−→ and C−→ notation to indicate linear and categorical
mappings respectively. Mappings removed and added during restyling are highlighted in red and and green respectively. Changed mappings and
attributes are highlighted in blue.

attribute to represent the companies using stars but we leave
the market capitalization→ area mapping unchanged. Orig-
inal visualization from the New York Times [29].

Bar Chart 1 (Figure 6a). The original bar chart shows the
20 countries with the highest unemployment rates sorted by
unemployment rate along the y-axis. We restyle the chart into
a dot plot using the approach outlined in Figure 4. Original
visualization by Leon du Toit [13].

Bar Chart 2 (Figure 6b). The original chart shows the dates
Easter Sunday falls on with frequency of each day repre-
sented by bar height. The chart highlights one bar in light
blue representing the date for Easter on the year selected in
a drop-down menu. We restyle the bar chart to resemble the
visual design of charts published by the Economist by chang-
ing the values of several unmapped mark attributes. Original
visualization by Chris Pudney [24].

Scatterplot (Figure 6c). The original scatterplot depicts the
Rotten Tomatoes data including the rating, profit, genre, and
budget for popular movies using several different mark at-
tributes. We restyle the chart by adding a redundant categor-
ical mapping genre→ shape to visually differentiate the gen-
res. We also add a redundant linear mapping budget → fill-
color-L so that the lightness channel of each mark’s color de-
picts the movie budget while the original mapping of genre to
the hue and saturation of the fill-color is unchanged. Original
visualization by Jim Vallandingham [30].

Donut Charts (Figure 6d). Each donut chart in the original
visualization represents the percentage of the population of a
U.S. state by age group. We restyle each donut chart into
a bar chart by removing the mappings to the attributes of the
arcs and then changing the shape attribute of each arc to a
rectangle. Finally we create new mappings for the height, x-
position and y-position of each bar. Original visualization by
Michael Bostock [4].

Choropleth Map (Figure 6e). The original choropleth map
shows U.S. unemployment by county using the fill-color of
each map region. We restyle the coloring of the map by
changing the rate → fill-color mapping for counties to a
multi-hue yellow to red scale [9]. We also update the stroke-
color and stroke-width attributes for map regions to empha-
size the borders between states and counties. Original is a
modified version of a visualization by Michael Bostock [3].

Marey’s Trains (Figure 6f). The original visualization is a
recreation of Marey’s train schedule chart. Each line rep-
resents a train and the original visualization maps the time,
location and train type (regular, limited service, baby bullet)
data fields for each train to the x-position, y-position and fill-
color attributes respectively. We restyle the visualization,
changing the mappings to fill-color and as well as the values
of several unmapped attributes in order to emphasize the dif-
ferent types of trains as well as their stops times and locations.
Original visualization by Michael Bostock [5].

8

Line Chart (Figure 7g) The original line chart shows the
number of tech company funding rounds by quarter, with
each line representing a different type of investment. We
change the line chart into a grouped bar chart by first chang-
ing the points deconstructed from each line into rectangle
shapes. We then add mappings from the funding rounds data
field to the height and y-position attributes of the bars. We
arrange the bars into groups using a deconID → x-position
mapping. We change the mapping investment type → fill-
color to change the coloring of the bars. Finally, we modify
the unmapped font-face attribute. Original visualization by
Steven Hall [15].

Stacked Bar Chart (Figure 7h). The original visualization
shows the proportion of immigrants by nationality in large
U.S. cities around 1900. We restyle the visualization to a
narrower aspect ratio by modifying the begin, percent → x-
position and percent → width mappings. The original bar
colors are not colorblind safe, so we also change the nation-
ality→ fill-color mapping to a qualitative color scale that is
perceptually distinguishable for protanopes – red-green col-
orblind individuals [9]. Original visualization by Jim Val-
landingham [31].

Parallel Coordinates (Figure 7i). The original parallel co-
ordinates chart depicts seven properties (economy, number
of cylinders, displacement, power, weight, acceleration, and
year of release) of different kinds of cars. We restyle the
chart into a scatterplot that shows the relationship between
two of these properties – economy and weight. Specifically
we change the shape attribute of each line mark to a circular
dot. We then add economy → y-position and weight → x-
position mappings for each dot. Finally, we remove all axes
except the first and fifth which represent weight and econ-
omy. We then generate a new x-axis by changing the rotation
attribute of the weight axis (fifth y-axis) marks. Original vi-
sualization by Jason Davies [12].

Our deconstruction and restyling tools allow rapid iteration
on the visual design of a D3 visualization without having to
understand its implementation. While our tools do assume
that users understand that charts are comprised of mappings
between data and mark attributes, users do not need experi-
ence with D3 or JavaScript to use our tools effectively. In
practice we have found that even experienced D3 developers
in our lab prefer to use our tools to explore the design space
of a visualization to avoid the overhead of modifying code.

Limitations
While our tools can successfully deconstruct and restyle
many different types of D3 visualizations, they have some
limitations. Our deconstruction tool currently focuses on
extracting linear and categorical mappings because they are
most common. However, visualizations can include more
complex functional mappings. For example, some D3 visual-
izations map numeric data fields to colors using a piecewise
linear mapping that interpolates between pairs of colors in a
sequential color scale [9]. Similarly, logarithmic, exponential
and polynomial transforms are sometimes used to map data
to positions of marks (e.g. log scale in a scatterplot). Our tool
cannot deconstruct such non-linear functional mappings.

Our tools parameterize the geometric attributes of marks us-
ing their bounding boxes. While this approach provides con-
trol over the position, size and area of marks independent of
their shape, it prevents our tools from manipulating the ver-
tices and angles of shapes. In donut charts such as the one
in Figure 6d, our deconstruction tool cannot recover the map-
ping from data to arc angle. However, our tool does recover
the data bound to each mark and we can therefore create a
new mapping from the data to rectangular marks to convert
the donut chart into a bar chart.

Our restyling tool is also unable to add new SVG nodes to
the visualization, which limits the kinds of visual redesigns
it can produce. For example, in Figure 6d our tool cannot
add text labels to the bar charts indicating the value of each
bar, because no such <text> node existed in the original
visualization. With the ability to add new SVG nodes bound
to an existing data schema, our restyling tool could generate
text labels displaying the percentage represented by each bar.

After restyling a visualization using our tools, the interaction
and animation effects of the original may no longer be func-
tional in the restyled version. Although we attach event lis-
teners and data from the original SVG nodes in the to new
nodes in the restyled visualization, these listeners often con-
tain D3 code that depends on specific attributes values of the
original node (e.g. shape, width or height). As we modify
these attributes the interaction and animation code may no
longer function correctly.

CONCLUSION AND FUTURE WORK
We have presented a pair of tools for deconstructing and
restyling D3 visualizations. Our tools empower viewers to
modify the visual look of existing D3 visualizations without
having to understand or examine the underlying code. We
believe there are several open directions for future work.

Handling a wider range of functional mappings. While
linear and categorical mappings between data and mark at-
tributes are most common, some visualizations include more
complex mappings (e.g. logarithmic, polynomial, piecewise
linear). It may be possible to automatically discover such
mappings using data mining techniques. Similarly it should
be possible to extend our restyling tool to let users define
complex mappings between the data and mark attributes.

Visualization style transfer. Style transfer is the problem of
applying the visual style of an exemplar visualization to a
target visualization. The challenge is to ensure that the tar-
get visualization conveys the same data it conveyed before
the style transfer. By analyzing the deconstructed mappings
in the original exemplar and target visualizations it may be
possible to perform the style transfer while preserving infor-
mational content of the original target.

Acknowledgments
This work was partially supported by the NSF Graduate Re-
search Fellowship DGE 1106400.

REFERENCES
1. Bertin, J. Semiology of graphics: Diagrams, networks,

maps. University of Wisconsin press, 1983.

9

2. Bostock, M. D3 Gallery.
https://github.com/mbostock/d3/wiki/Gallery.
Retrieved April 2014.

3. Bostock, M. Choropleth.
http://bl.ocks.org/mbostock/4060606/, Nov. 2012.
Retrieved April 2014.

4. Bostock, M. Donut Multiples.
http://bl.ocks.org/mbostock/3888852/, Oct. 2012.
Retrieved April 2014.

5. Bostock, M. Marey’s Trains.
http://bl.ocks.org/mbostock/5544008/, May 2013.
Retrieved April 2014.

6. Bostock, M., and Heer, J. Protovis: A graphical toolkit
for visualization. IEEE TVCG 15, 6 (2009), 1121–1128.

7. Bostock, M., Ogievetsky, V., and Heer, J. D3 data-driven
documents. IEEE TVCG 17, 12 (2011), 2301–2309.

8. Boston Globe. ’Women’ a central theme in Menino’s
speech. http://www.bostonglobe.com/2013/01/30/
mai/yWQCjhK7lyBaqgqFrakr1M/story.html, May 2013.
Retrieved April 2014.

9. Brewer, C. ColorBrewer: Color Advice for Maps.
http://colorbrewer2.org/. Retrieved April 2014.

10. Brosz, J., Nacenta, M. A., Pusch, R., Carpendale, S., and
Hurter, C. Transmogrification: Causal manipulation of
visualizations. In Proc. of UIST, ACM (2013), 97–106.

11. Chromium. https:
//developer.chrome.com/extensions/getstarted.
Retrieved April 2014.

12. Davies, J. Parallel Coordinates.
http://bl.ocks.org/jasondavies/1341281, Nov.
2011. Retrieved July 2014.

13. du Toit, L. Unemployment ranked with horizontal bars.
http://bl.ocks.org/leondutoit/6436923/, Sept.
2013. Retrieved April 2014.

14. Fekete, J. The infovis toolkit. In INFOVIS (2004),
167–174.

15. Hall, S. Multi Chart — delimited.
http://projects.delimited.io/experiments/
multi-series/multi-chart.html. Retrieved April
2014.

16. Heer, J., Card, S. K., and Landay, J. A. Prefuse: A
toolkit for interactive information visualization. In Proc.
of SIGCHI (2005), 421–430.

17. Huang, W., Liu, R., and Tan, C. L. Extraction of
vectorized graphical information from scientific chart
images. In Proc. of ICDAR, vol. 1, IEEE (2007),
521–525.

18. Huang, W., and Tan, C. L. A system for understanding
imaged infographics and its applications. In Proc. of
DocEng, ACM (2007), 9–18.

19. Huang, W., Tan, C. L., and Leow, W. K. Model-based
chart image recognition. In Graphics Recognition.
Springer, 2004, 87–99.

20. Kong, N., and Agrawala, M. Graphical overlays: Using
layered elements to aid chart reading. IEEE TVCG 18,
12 (2012), 2631–2638.

21. MTV. http://vma-twittertracker.mtv.com/live/.
Retrieved April 2014.

22. New York Times. Across U.S. Companies, Tax Rates
Vary Greatly. http://www.nytimes.com/interactive/
2013/05/25/sunday-review/corporate-taxes.html,
May 2013. Retrieved April 2014.

23. Prasad, V. S. N., Siddiquie, B., Golbeck, J., and Davis,
L. Classifying computer generated charts. In Proc. of
CBMI, IEEE (2007), 85–92.

24. Pudney, C. Easter Sunday.
http://bl.ocks.org/cpudney/2248382/, Mar. 2012.
Retrieved April 2014.

25. Ros, I. https://bl.ocksplorer.org. Retrieved April
2014.

26. Satyanarayan, A., and Heer, J. Lyra: An interactive
visualization design environment. In EuroVis (2014), To
appear.

27. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. Revision: A utomated classification,
analysis and redesign of chart images. In Proc. of UIST
(2011), 393–402.

28. Stolte, C., Tang, D., and Hanrahan, P. Polaris: A system
for query, analysis, and visualization of
multidimensional relational databases. IEEE TVCG 8, 1
(2002), 52–65.

29. Times, T. N. Y. Across u.s. companies, tax varies
greatly. http://www.nytimes.com/interactive/2013/
05/25/sunday-review/corporate-taxes.html/, May
2013. Retrieved April 2014.

30. Vallandingham, J. How Much Money Do The Movies
We Love Make?
http://vallandingham.me/vis/movie/. Retrieved
April 2014.

31. Vallandingham, J. Nationality by City. http://
vallandingham.me/vis/nationality_by_city.html.
Retrieved April 2014.

32. Vega. http://trifacta.github.io/vega/. Retrieved
April 2014.

33. Viau, C. The Big List of D3.js Examples.
http://christopheviau.com/d3list/. Retrieved April
2014.

34. Wickham, H. ggplot2: elegant graphics for data
analysis. Springer, 2009.

35. Yang, L., Huang, W., and Tan, C. L. Semi-automatic
ground truth generation for chart image recognition. In
Document Analysis Systems VII. Springer, 2006,
324–335.

36. Zhou, Y. P., and Tan, C. L. Hough technique for bar
charts detection and recognition in document images. In
Proc. of ICIP, vol. 2, IEEE (2000), 605–608.

10

https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/mbostock/4060606/
http://bl.ocks.org/mbostock/3888852/
http://bl.ocks.org/mbostock/5544008/
http://www.bostonglobe.com/2013/01/30/mai/yWQCjhK7lyBaqgqFrakr1M/story.html
http://www.bostonglobe.com/2013/01/30/mai/yWQCjhK7lyBaqgqFrakr1M/story.html
http://colorbrewer2.org/
https://developer.chrome.com/extensions/getstarted
https://developer.chrome.com/extensions/getstarted
http://bl.ocks.org/jasondavies/1341281
http://bl.ocks.org/leondutoit/6436923/
http://projects.delimited.io/experiments/multi-series/multi-chart.html
http://projects.delimited.io/experiments/multi-series/multi-chart.html
http://vma-twittertracker.mtv.com/live/
http://www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html
http://www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html
http://bl.ocks.org/cpudney/2248382/
https://bl.ocksplorer.org
http://www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html/
http://www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html/
http://vallandingham.me/vis/movie/
http://vallandingham.me/vis/nationality_by_city.html
http://vallandingham.me/vis/nationality_by_city.html
http://trifacta.github.io/vega/
http://christopheviau.com/d3list/

	Introduction
	Related Work
	D3 Preliminaries
	Overview
	Deconstruction
	Extracting Data and Marks
	Extracting Mappings

	Restyling
	Remove Mapping
	Change Mapping
	Add Mapping
	Updating Marks in the Visualization

	Results
	Limitations

	Conclusion and Future Work
	REFERENCES

